A New Algorithm for Demand Prediction of Fresh Agricultural Product Supply Chain

نویسنده

  • Xinwu Li
چکیده

Demand prediction plays a key role in supply chain management of fresh agricultural products enterprises and its algorithm research is a hotspot for the researchers related. A new algorithm for demand prediction of supply chain management of fresh agricultural products is advanced based on BP neural network and immune genetic particle swarm optimization algorithm. First, the deficiencies of traditional BP demand prediction models are analyzed. Second, the BP neural network and immune genetic particle swarm optimization algorithm are integrated and some measures are taken to overcome the deficiencies of traditional BP demand prediction models and calculation flows of the presented algorithm are redesigned. Finally, the presented algorithm is realized with the data from certain fresh agricultural products supply chain and the experimental results verify that the new algorithm can improve effectiveness and validity of demand prediction for fresh agricultural products supply chain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithm Research for Supply Chain Demand Prediction - Taking Fresh Agricultural Product Enterprises as Example

Supply chain demand prediction plays a very important role for enterprises to realize sales and markets management target effectively, especially for fresh agricultural product enterprises. A new model for supply chain demand prediction for fresh agricultural product enterprises is presented based on improved BP neural network. First the advantages and disadvantages of BP neural network algorit...

متن کامل

Research on Supply Chain Demand Prediction Based on Bp Neural Network Algorithm

Demand prediction is a hot research field in markets management, especially for fresh agricultural products prediction based on supply chain management. Based on BP neural network, a new demand prediction algorithm for fresh agricultural products is presented in the paper. First, the structure and data indicators of BP neural network algorithm are redesigned and the training function is selecte...

متن کامل

Research on Demand Prediction of Fresh Food Supply Chain Based on Improved Particle Swarm Optimization Algorithm

Demand prediction of supply chain is an important content and the first premise in supply management of different enterprises and has become one of the difficulties and hot research fields for the researchers related. The paper takes fresh food demand prediction for example and presents a new algorithm for predicting demand of fresh food supply chain. First, the working principle and the root c...

متن کامل

Tactical and operational planning for socially responsible fresh agricultural supply chain

Addressing an integrated decision-making structure for planting and harvesting scheduling may lead to more realistic, accurate, and efficient decision in fresh product supply chain. This study aims to develop an integrated bi-objective tactical and operational planning model for producing and distributing fresh crops. The first objective of the model is to maximize total revenue of supply chain...

متن کامل

A multi-product green supply chain under government supervision with price and demand uncertainty

In this paper, a bi-level game-theoretic model is proposed to investigate the effects of governmental financial intervention on green supply chain. This problem is formulated as a bi-level program for a green supply chain that produces various products with different environmental pollution levels. The problem is also regard uncertainties in market demand and sale price of raw materials and pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014